我在这里

传说中的软件工程师


  • 首页

  • 分类

  • 关于

  • 归档

  • 标签

  • 搜索
close

JDK1.8源码之ConcurrentHashMap

发表于 2016-12-09   |   分类于 java   |     |   阅读次数

什么是ConcurrentHashMap

以下观点都是建立在JDK1.8之上。

我们知道HashMap是非线程安全的,所以JDK给我们提供了几种线程安全的Map,HashTable,Collections.SynchronizedMap,ConcurrentHashMap几种线程安全的Map来使用。
HashTable是每个方法都是synchronized修饰的。
Collections.SynchroinzedMap则是用一个Object来当锁,每个方法里都使用synchronized(obj)来锁定。

这里没有理解以上的2种方法有什么区别,HashTable是作用在方法上的,所以锁的是this对象,后者是锁的Object,有什么区别吗?

最后一种ConcurrentHashMap则是使用了最新的锁技术来实现的。

实现原理

源码实现

变量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
// 最大的阀值
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 如果不指定长度,默认的长度
private static final int DEFAULT_CAPACITY = 16;
// 数组最大长度
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//与HashMap一样,负载因子也是0.75 当数组中有75%都有数据时就进行数组扩容
private static final float LOAD_FACTOR = 0.75f;
// 当数组单个位置链表长度超过此值之后,会修改为树结构
static final int TREEIFY_THRESHOLD = 8;
//当树结构节点小于6时,会修改为链表结构
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* The value should be at least 4 * TREEIFY_THRESHOLD to avoid
* conflicts between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* Minimum number of rebinnings per transfer step. Ranges are
* subdivided to allow multiple resizer threads. This value
* serves as a lower bound to avoid resizers encountering
* excessive memory contention. The value should be at least
* DEFAULT_CAPACITY.
*/
private static final int MIN_TRANSFER_STRIDE = 16;
/**
* The number of bits used for generation stamp in sizeCtl.
* Must be at least 6 for 32bit arrays.
*/
private static int RESIZE_STAMP_BITS = 16;
/**
* The maximum number of threads that can help resize.
* Must fit in 32 - RESIZE_STAMP_BITS bits.
*/
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
/**
* The bit shift for recording size stamp in sizeCtl.
*/
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
/*
* Encodings for Node hash fields. See above for explanation.
*/
static final int MOVED = -1; // hash for forwarding nodes
static final int TREEBIN = -2; // hash for roots of trees
static final int RESERVED = -3; // hash for transient reservations
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
// cpu数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* The array of bins. Lazily initialized upon first insertion.
* Size is always a power of two. Accessed directly by iterators.
*/
transient volatile Node<K,V>[] table;
/**
* The next table to use; non-null only while resizing.
*/
private transient volatile Node<K,V>[] nextTable;
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
private transient volatile long baseCount;
// 阀值用来控制数组是否要扩容,-1时表示正在初始化,-(1+n表示有几个线程在操作)
private transient volatile int sizeCtl;
/**
* The next table index (plus one) to split while resizing.
*/
private transient volatile int transferIndex;
/**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
private transient volatile int cellsBusy;
/**
* Table of counter cells. When non-null, size is a power of 2.
*/
private transient volatile CounterCell[] counterCells;

UnSafe相关

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
private static final sun.misc.Unsafe U;
private static final long SIZECTL;
private static final long TRANSFERINDEX;
private static final long BASECOUNT;
private static final long CELLSBUSY;
private static final long CELLVALUE;
private static final long ABASE;
private static final int ASHIFT;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentHashMap.class;
//获取sizeCtl变量在内存中的偏移量
SIZECTL = U.objectFieldOffset
(k.getDeclaredField("sizeCtl"));
TRANSFERINDEX = U.objectFieldOffset
(k.getDeclaredField("transferIndex"));
BASECOUNT = U.objectFieldOffset
(k.getDeclaredField("baseCount"));
CELLSBUSY = U.objectFieldOffset
(k.getDeclaredField("cellsBusy"));
Class<?> ck = CounterCell.class;
CELLVALUE = U.objectFieldOffset
(ck.getDeclaredField("value"));
Class<?> ak = Node[].class;
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
throw new Error("data type scale not a power of two");
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
} catch (Exception e) {
throw new Error(e);
}
}

构造方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
/** 这里直接判断了如果指定的值大于了最大长度的1/2,就直接等于最大值了
* 这里的 MAXIMUM_CAPACITY >>> 1 等于 MAXIMUM_CAPACITY / 2
* initialCapacity + (initialCapacity >>> 1) + 1
* 这里我没明白为什么要做这些操作,可能是为了求出在做散列时
* 更合适的值
*/
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}

构造方法都很类似,这里我只举例一个。

put方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//根据key的hashcode再次求hash
int hash = spread(key.hashCode());
int binCount = 0;
//开始操作数组 这里是个死循环 会在插入数据成功后break掉
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//数组并没有在构造方法里初始化,所以在第一次put的时候,会初始化数组
if (tab == null || (n = tab.length) == 0)
//这里我理解的是这样的,因为外层是个死循环,所以第一次执行到这的时候会进行初始化
//然后就进入了下一次循环,因为已经初始化完毕了,所以就会进入别的分支判断
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
/** 进入这个判断的条件是在数组下标位置上没有节点,就证明是个新节点可以直接插入
* 所以就进入了这层,在这层插入的时候,因为只用了一个if判断是用的cas操作
* 所以有可能会失败,当失败时,还是因为外层是个死循环,所以会一直执行这个插入
* 直到插入成功,break掉
* 并且f 和i 也顺便在这里进行了赋值 i等于数组长度-1 与上 hash
* f 等于 数组 i 位置上的元素
*
* /
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
/**
* 到这个判断,就证明数组下标位置现在是有节点的,所以会有2种操作,链表和树的操作
* 首先在这里锁住了首节点
*/
V oldVal = null;
synchronized (f) {
//由与上面f 和 i 已经赋值过了,所以这里再次进行了确认是否是同一个对象
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
// 以下这个循环是对链表进行循环
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 如果hash值 和key 完全相等,就证明是同一个对象
// 如果没有设置替换新值到这里就结束了
// 如果设置了就替换新值,并且结束
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
//这里是循环完整个链表都没有发现有相等的key
//直接在链表最后插入新的节点,并且结束
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//这里判断,如果节点是树类型的,则把节点放入到树结构中
//同链表一样,如果设置了需要覆盖新值,更新一下
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//binCount 在树中是写死的2 在链表中会随着操作的增加而增加
if (binCount != 0) {
//如果超过了设置的值,就需要把链表转换成树结构
if (binCount >= TREEIFY_THRESHOLD)
//转树操作,但里面还会有扩容
treeifyBin(tab, i);
// 因为上边的操作存储了oldVal,如果不为空直接返回此值,结束
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}

put方法总结:

存放对象的时候,第一次操作,会先初始化底层的数组对象,然后再进行后续的操作
在存放元素的时候有这么几种情况:
1.如果计算出的hash值与上数组长度得出的下标位置为null,则可以直接插入
2.如果当前元素的hash值为MOVED,就证明有线程在进行扩容,就帮助一起扩容
3.都没有的情况下,证明当前下标存在其他元素,则进入元素追加,如果是链表就进行链表的操作,如果是树,就进行树的操作,最后添加元素完成。
4.添加完元素,如果需要进行树的转换,进行转换。
5.增加计数器,完成所有操作。

treeifyBin方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//如果当前数组长度小于64,会直接扩容2倍,而不把当前节点轩换为树。
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
//获取index位置的节点,并且判断hash值为正常的节点,因为有可能存在-1等情况
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
//锁住首节点
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
//遍历所有节点,转换为树节点
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//然后把TreeNode包装成TreeBin做为数组下标的对象
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}

treeifyBin方法总结:

如果当前数组长度小于64,则不进行树元素的转换,直接扩容成2倍,如果不是的话,那就对节点进行转换,从链表节点,转换为树节点。

tryPresize方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
private final void tryPresize(int size) {
//根据给出的长度,计算出实际的长度
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
//sc>=0的条件下才会进入SizeCtl的具体值见定义
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
//数组没有初始化的情况,也就是一次都没有初始化,我个人感觉不会执行到这呢?
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
//把sizeCtl值修改为-1,为正在处理中
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
//这里再次判断了2个对象是否是一个对象,估计是为了防止其他对象操作?
if (table == tab) {
//初始化数组
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2);
}
} finally {
//最后修改sizeCtl的值,这里为什么没有用CAS操作,我理解是因为前边的if里已经修改为了-1,其他的线程不能操作,所以这里只用了普通的赋值
sizeCtl = sc;
}
}
}
//如果没到0.75数,或者已经大于最大值,停止此方法
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
//到这里就证明数组是已经初始化过了的,并且需要扩容
else if (tab == table) {
int rs = resizeStamp(n);
//这里是判断sc的值小于0证明在处理
if (sc < 0) {
Node<K,V>[] nt;
//没看懂什么意思
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
//把sizeCtl值+1并且进行扩容
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
//(rs << RESIZE_STAMP_SHIFT) + 2)没看懂求出来的这个值是什么,sc的值替换成这个之后,也进行扩容
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}

tryPresize方法总结:

这里就是对数组的一些异常情况做了兼容处理,最终保证扩容完成。

transfer方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//求出处理数组的线程数,最大是16个线程
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
//构造nextTab,长度为原来的2倍
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
//如果失败,则设置sc的最大值为int的最大值
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
//这里我理解的就是,因为是原来的2倍,所以转换的下标是n
transferIndex = n;
}
int nextn = nextTab.length;
//构造节点元素,用来标明此节点是正在处理的节点,此节点的hash值为-1
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
//锁住当前元素节点
synchronized (f) {
//再次确认节点是否相等,防止其他线程修改此节点
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
//链表
if (fh >= 0) {
//这里我不太理解为什么是&n,因为在普通put值的时候是&(n-1),这里求出的其实也是个下标位置
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
//这里对链表后面的元素也都进行了求值,但我个人理解这里的b应该绝对等于runBit才对啊,因为他们在put的时候被放入了同一个桶,就应该是hash值相同才对的
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}

transfer方法总结:
>

addCount方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
//使as等于counterCells 并且不等于null
//或者在修改baseCount时失败,才会进入此方法
//这里的x值,我个人理解的也就是此次增加了几个元素。
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}

remove方法

get方法

其他相关

总结

JDK源码之LinkedHashMap

发表于 2016-12-04   |   分类于 java   |     |   阅读次数

LinkedHashMap使用场景

我们都知道平常使用的HashMap是存放无顺序的,但当我们需要有顺序的HashMap的时候呢?所以JDK提供了LinkedHashMap和TreeMap2种有序的Map供我们使用。虽然以前一直都看过说LinkedHashMap是通过链表实现的,但一直没有去源码里探索究竟,今天看了之后原来和自己理解的不完全一样,理论的这些东西,还是自己真正去研究过才有底气。
LinkedHashMap还支持插入顺序和访问顺序2种方式,默认的就是按照插入顺序排序的,如果需要按照访问顺序排序,在初始化时设置accessOrder为true即可。通过这个访问顺序我们也可以实现简单的LRU算法。

源码概要

LinkedHashMap继承了HashMap,所以好多方法都是直接用的HashMap中的,在控制底层数据这方面,并没有选择自己去实现,而是通过重写了HashMap中的某些节点方法,来完成相应的功能。

比如通过重写一些对节点的操作来实现了自己的链表结构,增,删,改,查,几乎都是用的HashMap中的方法,但是在遍历的时候,以及在需要对象顺序的地方都重写了自己有序实现,这样即保持了功能性,又避免了开发重复的功能。

阅读全文 »

JDK源码之ThreadLocal

发表于 2016-11-26   |   分类于 java   |     |   阅读次数

ThreadLocal介绍

一般我们都是如果发现有资源需要共享的时候,在多个线程之间要互相共享数据的时候,我们可以使用ThreadLocal来实现。因为存入ThreadLocal中的数据是和每个线程绑定的,所以不会存在数据竞争的问题了。

使用场景

例子如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class ThreadLocalTest {
public static void main(String[] args) {
executeThread();
}
private static void executeThread() {
ExecutorService executor = Executors.newFixedThreadPool(10);
executor.submit(new MyThread());
executor.submit(new MyThread());
executor.submit(new MyThread());
executor.shutdown();
}
static class MyThread extends Thread {
ThreadLocal threadLocal = new ThreadLocal();
public void run() {
String str = Thread.currentThread() + "_" + Math.random();
threadLocal.set(str);
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(threadLocal.get());
}
}
}
阅读全文 »

hexo博客主动推送到百度站长平台

发表于 2016-11-26   |   分类于 hexo   |     |   阅读次数

推送百度站长平台

百度站长平台有几种方式提交自己的链接

  1. 主动推送(实时)
  2. 自动推送
  3. sitemap

或者自己手工提交,这里主要说以上三种方式。

阅读全文 »

hexo博客next主题修改静态资源为CDN

发表于 2016-11-15   |   分类于 hexo   |     |   阅读次数

问题

博主最近看到博客打开速度非常慢,点开chrome的开发者工具查看是由于css,js,图片加载太慢,故css,js换成了国内的cdn,图片换成了七牛云。
打开主题配置文件_config.yml以下为修改方式:

阅读全文 »

JDK源码之HashMap

发表于 2016-11-12   |   分类于 java   |     |   阅读次数

什么是HashMap

HashMap是一个可以提供O(1)时间复杂度的数据结构,由数组和链表数据结构组成。在对存入的key进行hash之后,然后用hash值在数组上确定一个位置,把value对象以Node节点形式放入到数组的链表当中。

jdk1.8之后对此做了优化,因为如果发生了数据倾斜,可能会使数组某个下标的Node链表非常长,因为链表查询起来比较慢,所以1.8之后修改了,当Node链表长度大于8时,会把该下标位置的链表数据结构修改为红黑树的结构来保证查询的速度。当数据长度小于8时,会再修改为链表。

使用场景

个人理解使用场景应该是在不需要复杂的查询,只需要一个Key对应一个Value,写入少的场景。因为像HashMap,ArrayList这种数据结构都提供了自动扩容的功能,像HashMap的负载因子是0.75,也就是当数组中75%的位置都有值以后会进行扩容。每次扩容的时候都涉及到每个数据的rehash和数组的复制,所以当写入数据量非常大的时候,会不断的进行rehash和复制,有可能会造成CPU占用率非常高(这只是个人平时学习的理解,如果有不对之处请大家指正)。

所以个人感觉HashMap的使用场景也是读多写少的场景,可以提供很快速度的读,写入的速度也可以,但如果提前知道Map里要放入多少数据,最好在new对象的时候,就手动指定出长度,这样可以避免rehash,从来变相提高使用效率。

源码实现 jdk1.8版本

以下的代码都是代码在上面,解释在下面。

变量声明
1
2
3
4
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

这个值是HashMap默认初始化的长度,也就是16长。

1
2
3
4
5
6
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30; //1073741824

这里按注释看,应该是HashMap支持的最大长度,如果超过这个值,则使用这个值。

阅读全文 »

JDK源码之CopyOnWriteArrayList

发表于 2016-11-10   |   分类于 java   |     |   阅读次数

什么是CopyOnWriteArrayList

CopyOnWriteArrayList是一个线程安全的List,和它相同的还有这几个,Vectory,SynchronizedList。
它们都是实现了List接口的线程安全类。

CopyOnWriteArrayList使用的是一种写时复制的算法,也就是说在执行add方法的时候,并不像传统的ArrayList一样在当前数组直接操作,
而是在执行add方法的时候,会把原来的数组复制并且长度+1,然后把新值设置到新的数组中,然后把新数组设置为当前使用状态,由于数组是volatile修饰的,所以JVM会自动来保证数组的可见性。

这样使此List在读取时可以不用加锁,提高读取效率,但是在添加的时候效率会很低下。所以我感觉CopyOnWriteArrayList的使用场景就是读多写少的场景,甚至在尽可能的情况下,不去写。这样才能发挥此数据结构的最大优点。

阅读全文 »

hexo next主题添加LeanCloud统计功能

发表于 2016-11-10   |   分类于 hexo   |     |   阅读次数

遇到的问题

网上能查到很多next主题添加LeanCloud主题的方法,但我看都是说在站点的_config.yml中添加

1
2
3
4
leancloud_visitors:
enable: true
app_id: appid
app_key: key

与是我也在站点的_config.yml中添加了,但不起作用。
与是我又去主题的目录中添加了,报错。
最后找到原因,是因为主题的_config.yml配置文件中已经自带了,在主题的_config.yml配置文件中308行左右,在这里直接配置即可。

参考资料

next主题添加LeanCloud

mac下使用springli创建springboot应用

发表于 2016-11-04   |   分类于 java   |     |   阅读次数

环境准备

生成springboot有以下几种方式

  1. maven
  2. gradle
  3. springli
  4. spring官网可以点击生成脚手架

spring官网介绍说springli是最快的方式,所以我使用了springli来构建。

mac安装springli我使用的是brew安装,如果没使用过brew请移步brew.

brew安装springli

1
2
$ brew tap pivotal/tap
$ brew install springboot

使用hexo生成博客在github js css 404解决方案

发表于 2016-11-04   |   分类于 hexo   |     |   阅读次数

问题

博主最近又开始写博客了,发现使用hexo next 主题,上传到github上之后,所有的vendors文件夹下的资源访问404,博主查了一些资料没有解决,故给github官方写了一封邮件,官方这样回复

Thanks for reaching out! We recently updated to Jekyll v3.3, which ignores the vendor folder by default. If you’re not using Jekyll, you can add a .nojekyll file to the root of your repository to disable Jekyll from building your site. Once you do that, your site should build with your vendor folder.

所以根据提示,在要目录下建立.nojekyll文件即可恢复正常,另外在hexo里,如果把文件放在source目录下,不会被生成到public目录中,根据github上网友的提示,把.nojekyll文件放在hexo主目录.deploy_git/ 文件夹下即可正常使用hexo d 上传,并且此文件也会上传到根目录。

2016-11-7号更新

next主题源码更新了,把vendors目录改名了,更新为最新代码即可解决。

12
klaus

klaus

java | 架构 |

20 日志
4 分类
27 标签
RSS
GitHub
Links
  • 龙哥的小站
© 2014 - 2017 klaus
由 Hexo 强力驱动
主题 - NexT.Muse